
Journal of Sound and <ibration (2002) 251(5), 919}926
doi:10.1006/jsvi.2001.3906, available online at http://www.idealibrary.com on
LETTERS TO THE EDITOR

USE OF FREQUENCYDATA TO PREDICT SECONDARYBIFURCATION

L. N. VIRGIN

Department of Mechanical Engineering and Materials Science, Duke ;niversity, Durham,
NC 27708-0300, ;.S.A. E-mail: l.virgin@duke.edu

AND

R. H. PLAUT

Charles E. <ia, Jr. Department of Civil and Environmental Engineering, <irginia Polytechnic Institute
and State ;niversity, Blacksburg, <A 24061}0105, ;.S.A.

(Received 12 July 2001)
1. INTRODUCTION

Changes in measured vibration frequencies during increasing loading have been used to
predict critical loads for buckling [1]. It is proposed here that secondary bifurcation also
can be predicted using extrapolation of frequency data. As the load is increased, some
systems bifurcate at the critical load from a trivial solution to an initially stable
post-buckled path, which then becomes unstable when another (secondary) bifurcation
point is reached. At secondary bifurcation, the system may suddenly jump to a di!erent
shape (mode jumping), which may cause damage. Therefore, the prediction of secondary
bifurcation is of practical as well as theoretical interest.
Secondary bifurcation has been examined widely for compressed rectangular plates (e.g.,

references [2, 3]), often where the secondary bifurcation initiates mode jumping [4].
A simple two-degree-of-freedom system, called Augusti's model, that exhibits similar
behavior has been used to study this phenomenon. Quasi-static analyses were carried out in
references [5}7] using the full non-linear equations and in references [8}12] using
a truncated form of these equations (retaining cubic terms). The aerodynamic response of
the model to transverse #ow was examined in reference [13].
In the present investigation, free vibrations of Augusti's model about the trivial

equilibrium state and the stable post-buckled equilibrium state are considered, using the full
non-linear equations. One of the two vibration frequencies reduces to zero at the critical
load. Subsequently, the other frequency reduces to zero when secondary bifurcation occurs
(and the post-buckled state then becomes unstable). Extrapolation of this second frequency
using measured data provides a means for estimating the load at which this instability
occurs.

2. FORMULATION

The model is depicted in Figure 1. A slender, rigid bar of length ¸ is pinned at its base,
where rotational springs with constant sti!nesses C

�
and C

�
(C

�
'C

�
) initially act in

perpendicular planes and rotate with the bar. The corresponding angles of rotation with
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Figure 1. Geometry of model.
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respect to two horizontal, perpendicular axes are �
�
(t) and �

�
(t), and the angles �

�
(t) and

�
�
(t) are de"ned as

�
�
(t)"(�/2)!�

�
(t), �

�
(t)"(�/2)!�

�
(t) (1)

with �
�
(t)"�

��
and �

�
(t)"�

��
when the springs are unstretched. A downward vertical

loadP is applied at the top of the bar. A concentrated massMmay be attached at the top of
the bar, and the bar is assumed to have a circular cross-section with uniform mass per unit
length m and moment of inertia I"m¸�/3 about any horizontal axis through its base.
The potential energy < is given by
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and the kinetic energy ¹ is
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where �, �

�
, and � are de"ned by [5}7, 14]
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(4)

Lagrange's equations are used to obtain the equations of motion.
The non-linear inertia terms in the resulting equations do not a!ect small vibrations of

the system about an equilibrium state. Also, in the responses following small initial
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conditions considered in section 5, the non-linear inertia terms have an insigni"cant e!ect.
Hence, for simplicity, only the linearized inertia terms will be used.
The analysis will be conducted in terms of the following non-dimensional quantities,

where � is a dimensional vibration frequency:

c"
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�
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, p"
P¸
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�

, �"t�
C

�
I#M¸��

���
, �"��

I#M¸�

C
�

�
���
, (5)

with c'1. The coupled, non-linear equations of motion are obtained as follows:

d��
�

d��
#�

�
!�

��
!p� sin 2�

�
"0,

d��
�

d��
#c�
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3. CHARACTERISTIC CURVES FOR PERFECT SYSTEM

The case �
��

"�
��

"0 is considered in this section, where the bar is vertical when the
springs are unstretched, as shown in Figure 1. The equilibrium solutions, determined from
equations (6) without the inertia terms, consist of the trivial solution �

�
"�

�
"0 and three

non-trivial solutions [5}7]:

(I): �
�
"0, p"

�
�

sin �
�

,

(II): �
�
"0, p"

c�
�

sin �
�

, (7)

(III): p"
�
�

� sin 2�
�

"

c�
�

� sin �
�

.

The critical load p"p
��
occurs when the equilibrium path I intersects the trivial solution, so

that p
��
"1. A secondary bifurcation then is encountered on path I when it is intersected by

path III. This occurs at �
�
"�*

�
, �

�
"0, and p"p* where [5}7]

c sin 2�*
�
"2�*

�
, p*"c cos �*

�
. (8)

The second of these equations is obtained by letting �
�
approach zero in the second

equation for case III in equations (7), and the "rst by using case I. Equilibrium paths in the
(�

�
, p) plane are plotted in Figure 2 for c"1)1, in which case p*"1)024 and �*

�
"0)3745.

The range 0)8(p(1)1 is shown in Figures 2}5.
To investigate small vibrations about the trivial equilibrium state, equations (6) are

linearized, leading to the squared frequencies

��
�
"1!p, ��

�
"c!p. (9)

The curves of p versus�� (i.e., characteristic curves) are linear and are shown in Figure 3 for
c"1)1, and up to p"1 (when the trivial solution becomes unstable).
For vibrations about path I, �

�
(t) and �

�
(t) in equations (7) are replaced by the sum of

their equilibrium values and small motions �
�
(t) and �

�
(t), respectively, and the resulting



Figure 2. Equilibrium paths for the perfect system: c"1)1, p
��
"1)0, p*"1)024, �*

�
"0)3745.

Figure 3. Characteristic curves for the perfect system: c"1)1; 22, ��
�
; } ) }, ��

�
.
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equations in �
�
(t) and �

�
(t) are linearized. The squared frequencies are found to be
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�

, ��
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p
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�
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�

. (10)

These frequencies are applicable for p'1 and are plotted in Figure 3 for c"1)1. As for
vibrations about the trivial solution, the modes are uncoupled, with �

�
"0 for the mode

associated with �
�
and �

�
"0 for the mode associated with �

�
.

The equilibrium states on path I are stable (since the squared frequencies are positive)
until secondary bifurcation occurs at p"p*. At that point, based on equations (8), the



Figure 4. Equilibrium paths for the imperfect system: c"1)1, p
�
"1)0052, �

�
"0)4183, �

��
"0)01, �

��
"0)0.

Figure 5. Characteristic curves for the imperfect system: c"1)1, �
��

"0)01; 22, ��
�
; } ) }, ��

�
.
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frequency �
�
in equation (10) becomes zero. Therefore, if some values of the frequency �

�
were determined for the physical system as the load is increased, extrapolation of the
characteristic curve could be used to estimate the value of p*. If a curve "t to the data points
is not almost linear, then the technique proposed in reference [1] could be applied, in which
the load is plotted versus various powers of the computed values of the relevant frequency
until an almost-linear relationship is found.
If the truncated analysis had been used, as in references [8}12], the equation for

path I would be p"[1!(��
�
)/6]��, secondary bifurcation would occur when

(�*
�
)�"6(c!1)/(c#3) and p*"(c#3)/4, and the frequencies for path I would be
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��
�
"2(p!1) and ��

�
"c#3!4p. Therefore, the characteristic curves for that

approximate analysis would be composed of linear segments, whereas the exact relations
are not quite linear.

4. CHARACTERISTIC CURVES FOR IMPERFECT SYSTEM

When the initial geometry of Augusti's model is not perfect, the primary equilibrium path
may become unstable at a limit point or a bifurcation point, and secondary bifurcation from
a stable state does not occur.
Consider a case in which �

��
'0 and �

��
"0 [4}6]. From equations (6), the primary

equilibrium path is given by
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�
�
!�

��
sin �

�

. (11)

Bifurcation occurs when p"p
�
, �

�
"�

�
, and �

�
"0, where

c sin 2�
�
"2(�

�
!�

��
), p

�
"c cos �

�
. (12)

Frequencies for small vibrations about the primary path are given by equations (10) except
that �

�
in the numerator of the last expression for each frequency is replaced by �

�
!�

��
.

The equilibrium and characteristic curves are plotted in Figures 4 and 5, respectively,
when c"1)1 and �

��
"0)01, for which p

�
"1)0052 and �

�
"0)4183. Instability can be

predicted by extrapolating the frequency which is originally the higher one to the load at
which it will reach zero. As seen in Figure 5, the curve for this case is almost linear as
p approaches p

�
.

5. DYNAMIC BEHAVIOR

The dynamic response of the model is of interest. In particular, it is enlightening to
investigate the motion of the system as the load is slowly increased. A very small amount of
damping is now added (0)1% in each mode for the purposes of numerical stability), so that
the motions are slowly attracted to nearby stable equilibrium states. The relations
governing the frequencies of small-amplitude oscillations are based on the results
above. Damping has the e!ect of causing oscillations to cease just prior to the onset of
instability [15].
Figure 6 shows a single time series based on the numerical integration of equations (6)

with damping, �
��

"�
��

"0)0, and c"1)1. In this case, the axial load is evolved (in a slow
non-stationary sense) according to the scheme

p"0)95#0)00005� (13)

such that the initial critical load is reached when �"1000. Initial conditions
�
�
(0)"�

�
(0)"0)05 generated the oscillations shown, and the gradual change in vibration

frequency is observed in both time series. Under these conditions, when p passes unity (at
�"1000), the system follows the stable post-buckled solution and some more transients are
generated in this buckling process. Subsequent increase in load enables the secondary
bifurcation to be encountered at �"1480 (when p"1)024). Prior to the secondary



Figure 6. A time series of oscillations during a transition through initial and secondary bifurcation: c"1)1,
�
�
(0)"�

�
(0)"0)05, �

��
"�

��
"0, 0)1% damping; (a) �

�
, (b) �

�
.
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bifurcation we observe the anticipated increase in natural frequency (the "rst of equations
(10)) in the �

�
direction and the reduction in natural frequency (the second of equations (10))

in the �
�
direction. No stable equilibrium state exists at higher values of p, and hence the

system completely loses stability. This is unlike the behavior demonstrated in references
[3, 4] for which mode jumping occurs at secondary bifurcation.

6. CONCLUDING REMARKS

Secondary bifurcation on a stable equilibrium path is typically associated with instability.
It has been observed as mode jumping in plates and other structural systems. This
phenomenon can be predicted by extrapolating the vibration frequencies at increasing load
levels to the load at which one frequency would become zero.
This proposed technique has been investigated here for Augusti's model,

a two-degree-of-freedom system. If the system is perfectly straight when unloaded, it
exhibits bifurcation to a stable equilibrium path, followed by secondary bifurcation (and
instability). The frequency that is initially lower becomes zero at the "rst bifurcation point.
Then one of the frequencies for small vibrations about the stable equilibrium path increases
from zero, while the other decreases and becomes zero when secondary bifurcation occurs.
The characteristic curve in the plot of load versus frequency squared may be almost linear
as this bifurcation is approached, so that extrapolation could give an accurate prediction of
the conditions for instability.
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